A Map of Olfactory Representation in the Drosophila Mushroom Body
نویسندگان
چکیده
Neural coding for olfactory sensory stimuli has been mapped near completion in the Drosophila first-order center, but little is known in the higher brain centers. Here, we report that the antenna lobe (AL) spatial map is transformed further in the calyx of the mushroom body (MB), an essential olfactory associated learning center, by stereotypic connections with projection neurons (PNs). We found that Kenyon cell (KC) dendrites are segregated into 17 complementary domains according to their neuroblast clonal origins and birth orders. Aligning the PN axonal map with the KC dendritic map and ultrastructural observation suggest a positional ordering such that inputs from the different AL glomeruli have distinct representations in the MB calyx, and these representations might synapse on functionally distinct KCs. Our data suggest that olfactory coding at the AL is decoded in the MB and then transferred via distinct lobes to separate higher brain centers.
منابع مشابه
Representation of the Glomerular Olfactory Map in the Drosophila Brain
We explored how the odor map in the Drosophila antennal lobe is represented in higher olfactory centers, the mushroom body and lateral horn. Systematic single-cell tracing of projection neurons (PNs) that send dendrites to specific glomeruli in the antennal lobe revealed their stereotypical axon branching patterns and terminal fields in the lateral horn. PNs with similar axon terminal fields te...
متن کاملLocalized olfactory representation in mushroom bodies of Drosophila larvae.
Odor discrimination in higher brain centers is essential for behavioral responses to odors. One such center is the mushroom body (MB) of insects, which is required for odor discrimination learning. The calyx of the MB receives olfactory input from projection neurons (PNs) that are targets of olfactory sensory neurons (OSNs) in the antennal lobe (AL). In the calyx, olfactory information is trans...
متن کاملOlfactory representations by Drosophila mushroom body neurons.
Learning and memory has been studied extensively in Drosophila using behavioral, molecular, and genetic approaches. These studies have identified the mushroom body as essential for the formation and retrieval of olfactory memories. We investigated odor responses of the principal neurons of the mushroom body, the Kenyon cells (KCs), in Drosophila using whole cell recordings in vivo. KC responses...
متن کاملDrosophila larvae establish appetitive olfactory memories via mushroom body neurons of embryonic origin.
Insect mushroom bodies are required for diverse behavioral functions, including odor learning and memory. Using the numerically simple olfactory pathway of the Drosophila melanogaster larva, we provide evidence that the formation of appetitive olfactory associations relies on embryonic-born intrinsic mushroom body neurons (Kenyon cells). The participation of larval-born Kenyon cells, i.e., neur...
متن کاملConvergence of multimodal sensory pathways to the mushroom body calyx in Drosophila melanogaster
Detailed structural analyses of the mushroom body which plays critical roles in olfactory learning and memory revealed that it is directly connected with multiple primary sensory centers in Drosophila. Connectivity patterns between the mushroom body and primary sensory centers suggest that each mushroom body lobe processes information on different combinations of multiple sensory modalities. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 128 شماره
صفحات -
تاریخ انتشار 2007